Master of Science in Data Modeling and Analytics

Image of data about seasonal flu, covid, and viruses on a black background. Photo by Sharad Bhat

New Program Starts Fall 2027! This program is designed for students with analytical curiosity and an interest in quantitative approaches to research and problem-solving. While there are no formal mathematics or statistics prerequisites, the curriculum is data-driven and quantitatively rigorous. Students will engage in statistical analysis, modeling, and interpretation of complex datasets. Applicants are encouraged to have some prior exposure to quantitative reasoning, statistics, or data analysis, which may come from coursework, research, or professional experience. The program provides structured support to help motivated students succeed in a quantitative environment. This degree provides students with in-demand applied analytical skills that can be applied in healthcare, pharmaceuticals, health policy, the financial sector, business, and many other industries!

Tulane undergraduates from all majors may apply to this program in the second semester of their junior year. In consultation with an advisor, students would begin taking graduate courses in their senior year. The 4+1 accelerated program allows student to apply nine credits of graduate courses to both the bachelor’s degree and the MS degree. The degree may be completed in approximately one year following graduation, depending on the number of credits students complete per semester.

This is an on-campus degree program, although some courses may be delivered online.

Admission Requirements

  • Applicants must meet the school's admission and application requirements for entrance into master's programs at the WSPH. Tulane undergraduates are only required to submit one letter of recommendation, and recommendations are waived for Tulane public health majors and public minors.
  • A minimum cumulative undergraduate GPA required for admission is 3.0 on a 4.0 scale. Applicants with a GPA below the 3.0 minimum may be considered for provisional admission if they demonstrate strong potential through factors such as significant professional experience, outstanding letters of recommendation, or successful completion of relevant graduate-level coursework.

Degree Program Competencies & Requirements

Program Competencies

  • Apply data modeling techniques to analyze public health, medicine and genomics data.
  • Assess model performance and validity using appropriate metrics, diagnostic techniques, and cross-validation approaches.
  • Utilize statistical packages (R, SAS, and STATA) to manage, process, and analyze large-scale datasets. 

Degree Program Requirements 

Foundational Course Requirements (9 credits): 

SPHL 6020 Foundations in Public Health (3 credits)* 
SPHL 6050 Biostatistics for Public Health (3 credits) 
SPHL 6060 Epidemiology for Public Health (3 credits) Program Course Requirements (15 credits): 
BIOS 6290 Data Management and Statistical Computing (3 credits) 
BIOS 6220 Database Management (3 credits) 
BIOS 7000 Comparative Analysis: Parametric and Non-Parametric Methods (3 credits) 
BIOS 7020 Data Modeling with Regression (3 credits) 
BIOS 7030 Supervised and Unsupervised Methods (3 credits) 
*If BSPH student
 

Elective Courses (6 credits, choose 2 in consultation with faculty advisor)

SPHL 6070 Health Systems Policy and Management (3 credits) 
SPHL 6110 Intro to GIS for Public Health (3 credits) 
BIOS 7110 Time-to-event and longitudinal data analysis (3 credits) 
BIOS 7130 Mediation, Moderation, and Multivariate Methods (3 credits) 

Additional Program Requirements: 

Master's Thesis Research (1 credit) 

The MS thesis is the culminating experience of the MS in Data Modeling and Analytics program, allowing students to integrate and apply the knowledge and skills acquired throughout their coursework. Working individually, students will engage in a comprehensive, real-world project that addresses a complex data-driven problem drawn from industry, government, healthcare, or academic research. 

Students will be expected to: 

  • Identify and define a research question or applied problem.
  • Manage and prepare data for analysis using advanced database and querying techniques.
  • Apply appropriate statistical, computational, and machine learning models to analyze the data.
  • Critically evaluate the performance and limitations of chosen models.
  • Communicate results through a written report.

Model Course Schedule

4+1 Accelerated MS Program Model Schedule  
 

Fall Semester, Senior Undergraduate
SPHL 6050 Biostatistics for Public Health (3)
BIOS 6290 Data Management and Statistical Computing (3)
Semester Sub-Total: 6

 

Spring Semester, Senior Undergraduate
BIOS 6220 Database Management (3)
Semester Sub-Total: 3

 

Summer Semester, Year 1
SPHL 6060 Epidemiology for Public Health (3)*
SPHL 6020 Foundations in Public Health (3)
Semester Sub-Total: 6

 

Fall Semester, Year 1
BIOS 7000 Comparative Analysis: Parametric and Non-Parametric Methods (3)
BIOS 7020 Data Modeling with Regression (3)
BIOS 7030 Supervised and Unsupervised Methods (3)
Semester Sub-Total: 9

 

Spring Semester, Year 1
BIOS 9980 MS Thesis (1)
2 of these 4 Electives (6) 

BIOS 7110 Time-to-event and longitudinal data analysis
BIOS 7130 Mediation, Moderation, and Multivariate Methods
SPHL 6110 Intro to GIS for Public Health
SPHL 6070 Health Systems Policy and Management
Semester Sub-Total


Total Degree Credits 31



Model Schedule for Spring Entry

 

Spring Semester, Year 1
SPHL 6050 Biostatistics for Public Health (3)
BIOS 6290 Data Management and Statistical Computing (3)
SPHL 6060 Epidemiology for Public Health (3)
SPHL 6020 Foundations in Public Health (3) *
Semester Sub-Total: 12
*If BSPH student

 

Fall Semester, Year 1
BIOS 7000 Comparative Analysis: Parametric and Non-Parametric Methods (3)
BIOS 7020 Data Modeling with Regression (3)
BIOS 7030 Supervised and Unsupervised Methods (3)
Semester Sub-Total: 9

 

Spring Semester, Year 2
BIOS 6220 Database Management (3)
BIOS 9980 MS Thesis (1)
2 of these 4 Electives (6)

BIOS 7110 Survival Analysis and Longitudinal Data Analysis
BIOS 7130 Multivariate and Mediational Analysis
SPHL 6110 Intro to GIS for Public Health
SPHL 6070 Health Systems Policy and Management
Semester Sub-Total (10) 

Total Degree Credits 31


*Students who receive a BSPH degree can waive SPHL 6020 and replace the 3 credits with an elective course
 

Contact Us


Department Interim Chair: Sudesh Srivastav, PhD

Program Director:  Arti Shankar, PhD

Administrative Program Coordinator: Farhana Chaudhry

Email: bios@tulane.edu

Phone: (504) 988-2042


Ready for More?

Request Information   Connect With Us  Public Health Discovery Seminars

Apply Now